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Abstract.   In industry, a comprehensive control process is necessary in order to 
ensure the quality of a manufactured product. In the manufacturing process of 
concrete, the variables are dependent on several factors, some of them external, 
which require very precise estimation. To resolve this problem we use techniques 
based on artificial neural networks. Throughout this paper we describe an RBF 
(Radial Basis Function) neural network, designed and trained for the prediction of 
radial in concrete manufacturing plants. With this predictive algorithm we have 
achieved results that have significantly improved upon those obtained to date us-
ing other methods in the concrete industry. 
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1  Introduction 
 

Concrete is made up from a mixture of four materials: cement, aggregates, water 
and additives. The type of concrete to be manufactured is determined by a formula 
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which establishes the dosage of each raw material. The materials are added from 
hoppers and tanks into the plant mixer. The amount of ingredients should be those 
contained in the formula as dosing errors are limiting and may make the mixture 
unusable. This problem is characteristic of a large number of processes; in [1] 
several methods based on anticipatory compensation are proposed to systemati-
cally reduce inaccuracies during the application of highly viscous substances.  

In this paper we present a control system for concrete plants that integrates a 
predictive algorithm based on RBF neural networks to produce anticipatory ac-
tions that reduce dosing errors. The predictive algorithm runs in parallel with the 
control system and produces anticipatory actions on the gates of dispensing 
equipment. The predictive algorithm runs online and it is adjusted at each dosing 
manoeuvre. 

Since the McCulloch-Pitts' model (1943) and Hebb's learning algorithm (1949), 
a large number of models and training algorithms have emerged. All these algo-
rithms are characterized by the use of massive parallelism and redundancy, which 
makes them very robust. They are also distributed algorithms, fault-tolerant and 
learn through training, all characteristics that make them well suited for industrial 
applications. Since the late 1980s there has been considerable interest in radial 
basis function (RBF) neural networks, due to their good global generalization ca-
pacity and a simple network structure.  RBF neural networks use radial basis func-
tions as activation functions and have been widely applied to function approxima-
tion, prediction time and control functions. Gaussian functions are selected in the 
majority of cases as radial basis functions. In [2] an identification scheme for dy-
namic systems based on an RBF neural network is proposed. This network is 
trained online and dynamically adjusts its structure (number of nodes or elements 
in the hidden layer) allowing real time implementation of the identifier in the con-
trol loop. A performance analysis of the minimal resource allocating network 
(MRAN) algorithm for online identification of non-linear dynamic systems was 
presented in [3]. 

The algorithm proposed in this paper uses the time series data generated in the 
dosing processes of cement, aggregates, additives and water to make predictions. 
Some previous work proposes the use of radial basis function networks for time 
series prediction (see [4]). Several solutions based on RBF networks have been 
applied in the concrete industry to predict concrete strength. A prediction model 
based on an RBF network with 9 input vectors and 1 output vector is proposed in 
[5], to express the complex non-linear relationship of factors which affect concrete 
performance. As a result, this model has good generalization capacity and is 
highly precise as a predictive method for concrete performance. 

 
 



 

 

2  System Description 
 

The concrete plant where this predictive control system has been integrated con-
sists of four aggregate hoppers, two cement silos, two scales, two additive feeders, 
a water dispenser and a mixer. The aggregate hoppers and cement silos store the 
aggregates and cements that are then dosed using aggregate and cement scales in 
the order and quantity specified by the control system. The aggregate and cement 
scales have loading cells which measure the amount of aggregate and cement fal-
ling from the storage hoppers and silos. The dosage of additives from the feeders 
into the mixer is measured by flow meters. The water is also dosed directly into 
the mixer and is measured by flow meters. The material from the aggregate and 
cement scales is mixed in the mixer with the additives and water for the length of 
time necessary to produce a homogeneous mixture. 

Strength is the most important property of concrete, therefore, it must be con-
trolled to meet the required specifications. The strength is determined by testing 
samples of produced concrete with different curing times. In [6], soft computing 
techniques are applied to dosing standard concrete mixes. In [7], neural networks 
have been applied to estimate the influence ingredient quantities have on the 
strength of concrete produced. Other important properties to consider are cement 
content and water-cement ratio. 

 
 

Fig. 1 Concrete plant.  

The concrete plant control system for tests is composed of a SIEMENS 
ET200S PLC, SCADA terminals, and an NI CompactRIO for historical storage 
operations in a batch process. NI CompactRIO PAC is connected to the PLC 
through a PROFIBUS communication bus and stores the values of important 



 

 

process variables for analysis.  The PLC controls the plant according to the re-
quested quantity of formula.  In this way it achieves optimum dosing and precise 
amounts of different sized aggregates, cement, additives and water. The control 
algorithms are programmed to form a multi threaded application where each piece 
of equipment contains its own execution thread. 

 

Fig. 2 Control system diagram. 

Each machine at the concrete plant has an execution thread in the control algo-
rithm, the additive feeders, cement silos, aggregate hoppers and water supply are 
all considered as dosing elements. Each dosing element receives the anticipative 
input from the RBF prediction algorithm. All the RBF predictors for every dosing 
element are implemented in the NI CompactRIO.  

 
 

Fig. 3 Integration of the predictive algorithm with the control process algorithms.  

In a dispenser, the material dosage starts with the open discharge gate com-
mand that pours the material onto the scale. The weight of material dispensed is 
monitored to determine the exact moment when it reaches the setpoint of the dis-
charge gate close. The following graphs describe the material flow rate and dis-
pensed weight over time. 

 



 

 

 
Fig. 4 Graphics flow Vs time and weight Vs time. 

As noted, after the close setpoint, material dosing continues because the dis-
charge gate close action is not instantaneous. The difference between the weight 
measured after a stabilization period (Partial Discharge) and the weight measured 
at the exact time of the close set point (Discharge Close) is the Radial of a dis-
pensing element.  

The Radial has a direct relationship to the quality of manufactured concrete and 
its prediction is the main subject of this article. A bad estimation of element radial 
causes the dosage of materials to differ from those indicated in the formula, and 
the concrete manufactured will be of a lower quality, or simply have different 
qualities to the ones specified by the formula. The following sections describe in 
detail the study of prediction methods used in the calculation of element radials. 

Until now, the prediction of radials in our test plants has been performed using 
a moving average method. The estimate depends exclusively on the average of the 
last 10 measurements. This method has many disadvantages as it does not take 
into account critical factors such as moisture, the physical form of the hopper, the 
value of the setpoint or flow rate at the gate closing time. With this method a ra-
dial outlier negatively affects the following 10 cycles. For these reasons a more 
sophisticated algorithm is necessary. The RBF neural network has significantly 
improved these estimates as discussed in the next section. 

3  Application of RBF in predicting radial. 
 
RBF (Radial Basis Function) is a type of neural network that allows you to adjust 
non-linear functions. They are commonly used to classify patterns of behaviour in 



 

 

which the number of patterns is not too great. It is characterized by high efficiency 
and speed in learning. 

This is the typical architecture of an RBF network: 
 
 
 
 
 
 
 
 
Fig. 5 Architecture of an RBF network  

As shown in the diagram, RBF is divided into 3 layers: input, hidden and out-
put. The input layer is used for data acquisition and training patterns of the net-
work. In this layer, there are as many neurons as inputs to the network. Neurons in 
the hidden layer apply a Gaussian function which has two parameters: center and 
width. The center is the n-dimensional space (where n is the number of entries) 
that defines the center of gravity of the Gaussian function of the neuron. The 
width is used to define the standard deviation (amplitude) of the bell curve. There 
are various algorithms for the calculation of the centers, one of the most popular is 
the K-Means. 

Output z of the RBF is a function of a non-linear transformation arising in the 
hidden layer, produced by the radial function (Gaussian function) followed by a 
linear transformation produced in the output layer, which adds each of the results 
of the hidden layer, multiplied by a factor called weights (w), which varies accord-
ing to the learning process: 
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where M is the number of neurons in the hidden layer, n is the number of inputs to 
the RBF network (neurons in the input layer), ci is the center of the neuron i in the 
hidden layer, (coordinates c1, c2, …, cn), xi is the input vector (formed by the coor-
dinates x1, x2, …, xn), d is the radial or Euclidean distance (radius from the point 
defined by the input vector to the center of the neuron i in the hidden layer), φ is 



 

 

the radial function (Gaussian), wi is the weight factor and z, y(x) is the response of  
RBF neural network. 

When an input vector is close to the center of a neuron of the hidden layer, this 
neuron will have a higher weight on the output, being highest when the entry 
matches the center of the neuron, and lower as it moves.  Gaussian function allows 
them to activate those neurons whose centers are closest to the input vector, and 
inhibiting those with more distant centers. 

For the training and design of the RBF network applied to radial prediction, ini-
tially, a data matrix for training the network is built from measurements taken at 
the plant, having as inputs the following process variables: Error (%) Flow (kg/s), 
moisture (%), set point (Kg) and measured radial (Kg) for each of the cases. The 
data matrix used for training is: 

Table 1. Data matrix. 

 Error (%) Flow (Kg/s) Moisture (%) Setpoint(Kg) Radial (Kg) 
1 1,14 81 1,53 1558 11 
2 1,28 83 1,58 1723 21 
3 1,23 82 1,61 1324 12 
4 1,14 80 2,14 1421 14 
5 1,29 81 2,5 1369 11 
6 1,33 84 2,63 1504 15 
7 1,21 81 3,31 1578 16 
8 1,14 78 3,5 1431 13 
9 1,18 82 3,7 1248 12 
10 1,17 82 3,71 1523 13 

 
Below is the RBF network designed architecture: 

 
 
  
   
 
 
  
 
 
Fig. 6 RBF network designed 



 

 

For the design, calculation and training of the RBF, the Model Browser tool of 
Matlab was used. The centers have been determined by the Rols algorithm, and 
these are the coordinates of each one: 

 
Table 2. Center position 
 

 Error (%) Flow(Kg/s) Moisture (%) Setpoint(Kg) 
Center 1 1.28 83.0 1.58 1723.0 
Center 2 1.21 81.0 3.31 1578.0 
Center 3 1.33 84.0 2.63 1504.0 
Center 4 1.14 80.0 2.14 1421.0 
Center 5 1.14 78.0 3.50 1431.0 

 

 

 

 

 
Fig. 7 Center position. 

 
 

 
 
 

 
  

Fig. 8 Graph of Radial Vs Predicted Radial for each input vectors from matrix training   

4  Results. 
 

There is a significant improvement in the estimation of radial with the RBF neural 
network. Compared with the old method, moving average, the estimation accuracy 



 

 

has improved significantly. The RBF neural network discussed here is currently 
being used in our test plants with excellent results. 

Shown below is a comparison between the two prediction methods used for ra-
dial estimation: moving average (old method) and RBF (current). To obtain an 
initial mean real radial values from Table 1 have been used. 

Table 3. Process variable and predicting radial with moving average and RBF.  

 Error 
(%) 

Flow     
(Kg/s) 

Moisture 
(%) 

Setpoint      
(Kg) 

Real Radial 
(Kg) 

Predicted Radial 
with moving      
average  (Kg) 

Predicted 
Radial with 
RBF (Kg) 

Cycle 1 1.22 82 2.13 1434 16 13 16 
Cycle 2 1.31 82.1 2.13 1435 19 14 18 
Cycle 3 1.28 81.7 2.14 1428 15 14 15 
Cycle 4 1.20 81.4 2.14 1430 11 15 12 
Cycle 5 1.32 82 2.14 1433 17 14 16 

 
  

 

 

 

 

Fig. 9 Comparison of errors between moving average and RBF methods.    

References 
 

1. Reinhart, G., Gartner, J.: Reduction of Systematic Dosing Inaccuracies During the 
Application of Highly Viscous Substances. CIRP Annals – Manufacturing Technolo-
gy. Volume 50, Issue 1. 1-4 (2001) 

2. Valverde Gil, R., Gachet Páez, D.: Identificación de Sistemas Dinámicos Utilizando 
Redes Neuronales RBF. Revista Iberoamericana de Automática e Informática Indus-
trial. ISSN: 697-7912. Vol. 4, num 2, pp. 32-42 (2007) 

3. Li, Y., Sundararajan, N., Saratchadran, P.: Analysis of Minimal Radial Basis Function 
in Network Algorithm for Real-Time Identification of Nonlinear Dynamic Systems. 
IEE Proc. On Control Theory and Applications. 147(4), pp. 476-484 (2000) 

4. Bouchachia, A.: Radial Basis Function Nets for Time Series Prediction. International 
Journal of Computation Intelligence Systems (2). 147-157 (2009) 



 

 

5. Shengli1, Z., Yan, L.: Performance Prediction of Commercial Concrete Based on RBF 
Neural Network. Journal of Changsha University of Electric Power (Natural Science). 
(2001) 

6. Nataraj, M.C., Ravikumar, C.N., Jayaram, M.A.: An Integrated Soft Computing Tech-
nique for Proportioning Standard Concrete Mixes. New Building Materials and Con-
struction World, Vol 11, Issue-7, January (2006) 

7. Yeh, I-Cheng: Analysis of Strength of Concrete Using Design of Experiments and 
Neural Networks. Journal of Materials in Civil Engineering, ASCE. 597-604 (2006) 

 


